SLAMBEHANDLING OG RESSURSGJENVINNING PÅGÅENDE PROSJEKTER OG VEGEN VIDERE

Vannprisseminaret 2025

Oslo, 29. Oktober 2025
Thomas Bugge & Anniken Alsos, SUEZ

- Introduction of SUEZ and sludge treatment
- SUEZ' Biofactory and a case in Pau
- What's next?

Vannprisseminaret 2025 - Oslo - 29. Oktober 2025

*: Smart Environmental Solutions

Present in the Nordics since 1980's

Previously known as Degremont and Puritek

Reestablished in Denmark in 2015 as SUEZ Water A/S

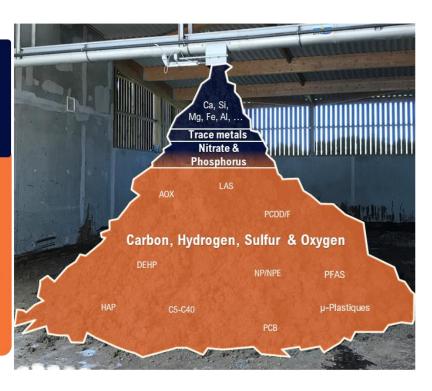
SUEZ Norway AS established in October 2025

Key figures and proven sludge treatment solutions

+ 3,200

DRINKING WATER plants
designed and built by SUEZ

+ 260


DESALINATION plants designed and built by SUEZ

+ 2,800

WASTEWATER
treatment plants
designed and built by SUEZ
(including + 50 WATER REUSE references)

What is in the sludge?

NITROGEN & PHOSPHORUS

Fertilizer

In case of new disposal route → try to maintain the recycling of nutrients

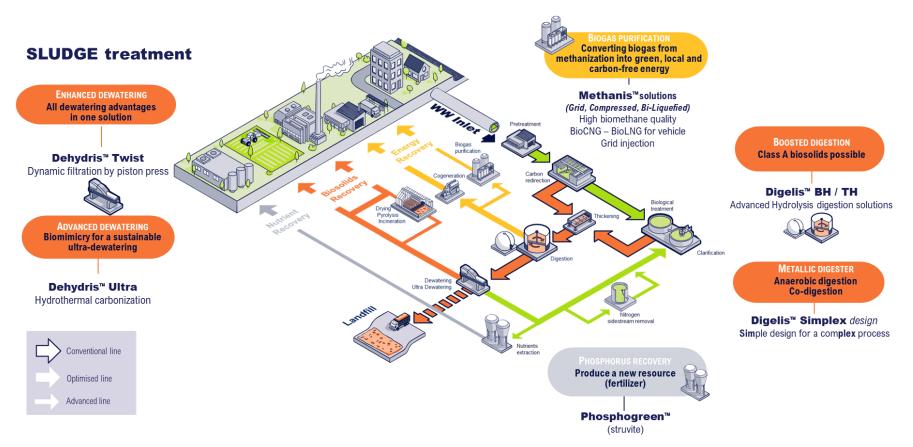
CARBON, HYDROGEN, SULFUR

Energy

Potential biogenic carbon (Carbon capture & storage)

HEAVY METALS

Well **controlled decreasing concentrations** in time (increasing constraints for usage in agriculture)


ORGANIC TRACE CONTAMINANTS (dispersed in matrix)

Rising concern & uncertainties about health implication increasing regulatory constraints (ban on agriculture in some countries)

New contaminants (PFAS)

Sludge treatment lines as of today with conventional and advanced treatment lines

Case: Marselisborg WWTP (200.000 PE)

The plant was commissioned in 2018

Producing a high-class fertilizer approved by EPA

But: Difficult to sell the product on the free market

What are the drivers for new solutions?

CURRENT DRIVERS & NEEDS OF COLLECTIVITIES

Disposal costs = reduce waste volume

Opportunity for **energy production**(Directive energy neutrality & on biomethane in France)

ANTICIPATING FUTURE DEVELOPMENTS

Emerging market for CO₂ credit and opportunities for Carbon Capture use and storage

Increasing **constraints on micropollutants** and risk of "Media frenzy"→ Need of alternatives to land application

Requirement for nutrients recovery

OUR ANSWER

INCREMENTAL INNOVATION ON MATURE

PROCESSES to increase performances (more biogas, smaller footprint, digitalization for better operation)

INNOVATIVE TREATMENTS

To transform **residual organic matter into energy** (eliminating organic contaminants)

To produce new product eligible for carbon credits (biochar)

RENEWED INTEREST FOR THERMAL TECHNOLOGIES (including incineration)

Thermal treatments are regaining focus

Convert Organic matter into:

Client's objective for Sludge Organic Matter

solutions

Dewatered sludge: 85%-70% water

Hydrothermal

Dried sludge: 20-10% of water

Pyro

INCINERATION

(a lot of references)

HYDROTHERMAL CARBONIZATION

PYRO CARBONIZATION

HYDROTHERMAL GASIFICATION

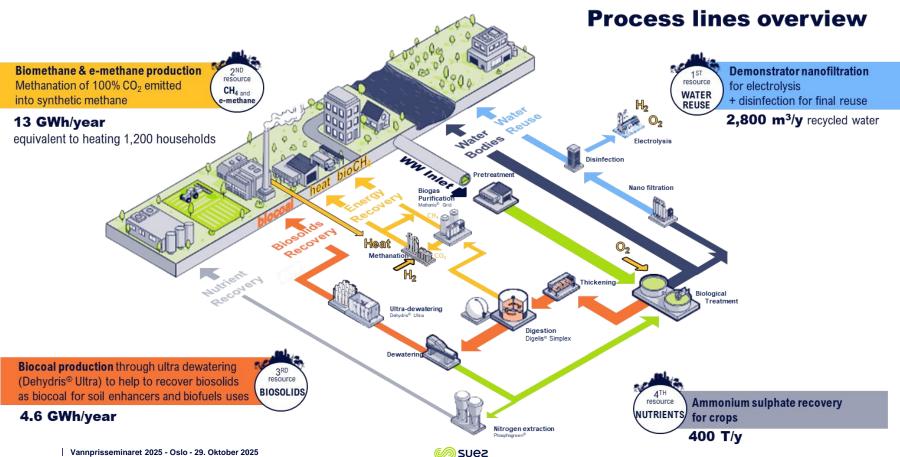
PYRO GASIFICATION

Context

Existing Pau Lescar WWTP built between 1980 and 2006).

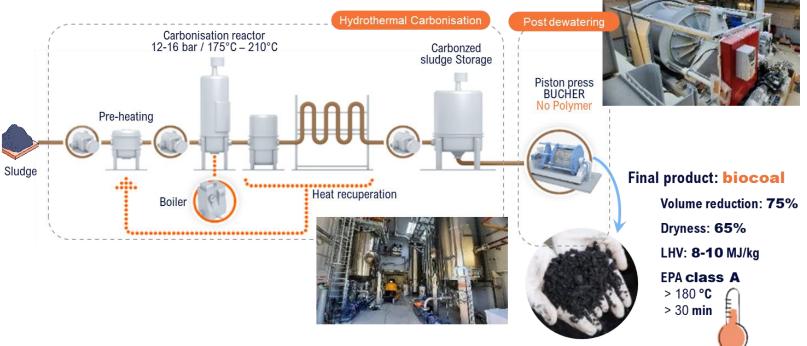
Extended aeration activated sludge plant Capacity: 190 000 PE

Current sludge treatment = high cost and not sustainable


Upgrading of the sludge treatment proposed in Bid for O&M (at the same time BID for nearby Waste Incinerator)

Client objective

Decarbonize the future sewage sludge facility, promote **resource recovery**



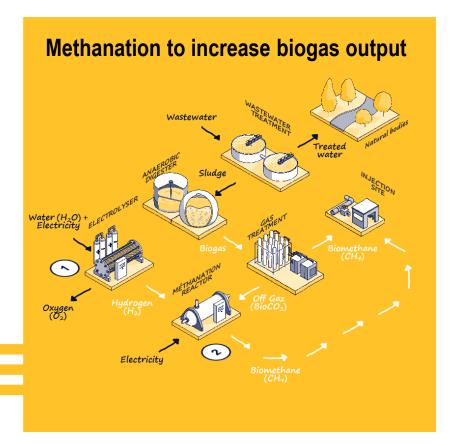
Dehydris® Ultra

Combination of hydrothermal conditioning and advanced filtration

1. Water electrolysis

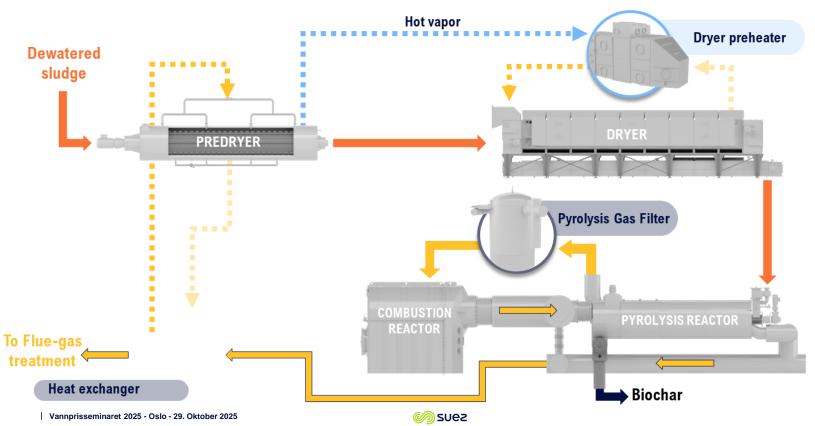
Water electrolysis to produce hydrogen

 $2 H_2O \Rightarrow 2 H_2 + O_2$


2 Methanation

Combine hydrogen and BioCO₂ to produce biomethane to be injected in the gas grid

4 H₂ + CO₂ → 2 H₂O + CH₄


2 type of process Catalytic / Biological

What's next?

Short term: Pyrocarbonization

Pyrolis® S2B: Sludge to Biochar

Short term: Pyrocarbonization

Contaminants of Emerging Concern removal

100 %

Pathogens elimination. Process conditions (T° >500°C for several minutes) are much more severe than approved hygienization conditions

100% **Pharmaceuticals** destruction.

> 90% **Per- and Polyfluoroalkyl** Substances (PFAS) destruction in biochar and flue gas.

100% **Microplastics** elimination.

2-9 times

less bioavailable than in biosolids.

> 99% elimination of other CEC PCB, PCDD/Fs, PAH, OPFRs, etc...

PCB: PolyChlorinated Biphenyls PCDD/Fs: PolyChlorinated Dibenzo-p-Dioxins and Furans PAH: Polycyclic Aromatic Hydrocarbons OPFRs: OrganoPhosphate Flame Retardants Endocrine-disrupting chemicals

What's next? Short term: Pyrocarbonization

What's next?

Long term: Hydrothermal gasification?

Transformation of more than 80% of organic matter into combustible syngaz

Energy Balance +++

Recovery of Nitrogen, Phosphorus and Potassium as salts

No or almost no waste

(*) TRL: (Technical Readiness Level)

suez.com

Spørsmål?

Thomas Bugge

Sales and Business Development Manager SUEZ Denmark thomas.bugge@suez.com

Anniken Alsos

Country Manager SUEZ Norway AS anniken.alsos@suez.com

