EWA Spring Conference: «Shaping the Future of Water Management in Europe», Oslo May 2025

One well-proven way for meeting the new EU directive standard on N-removal in Norway

Hallvard Ødegaard

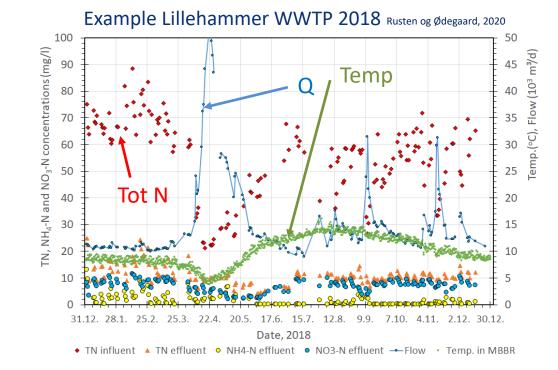
Prof. em. Norwegian University of Science and Technology (NTNU) CEO Scandinavian Environmental Technology (SET AS)

hallvard.odegaard@ntnu.no

The tot.N and tot.P-standards

Parameter	The previous directive		The present directive		Norwegian environmental authorities		
	mg/l out	% rem.	mg/l out	% rem.	Old regulation	New regulation ¹	
Tot N >150.000 pe <150.000 pe	10 15	70-80 70-80	8 10	80 80	70 % (selected plants)	80 % (>80 % for selected)	
Tot P >100.000 pe <100.000 pe	1,0 2,0	80 80	0,5 0,75	90 87,5	90 % (>95 % for selected)	90 % (>95 % for selected)	

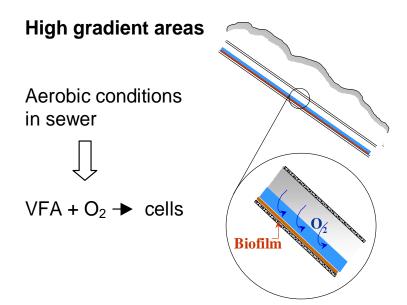
¹Proposal


OBS!

- If the Norwegian proposal stands, the N-standard for most Norwegian plants, will be stricter than the EU-standard – for example: 35 mg Tot N_{in} require 7 mg Tot N_{out}
- I recommend to the authorities, that the directive is implemented in Norway as it is

Norwegian challenges in N-removal

- 1. Large variation
 - Temperature
 - Flow
 - Tot N, BOD
- 2. Diluted wastewater
- 3. Low C/N
- 4. Space availability
 - In-door or underground plants
 - Compact processes
 needed



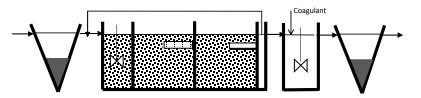
Typical in Norway: Snow-melt in spring gives high flow, low temp, low C_{N. BOD} and low C/N

SET AS

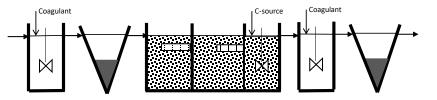
Rusten, B., Ødegaard, H. (2023) Nitrogen removal in MBBR plants at low temperatures - Experiences from Norway. Water, Sci. Technol., wst2023.154: https://doi.org/10.2166/wst.2023.154

Why low C/N in many Norwegian plants ?

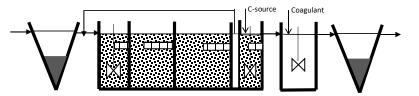
In Norway we have normally a quite high fraction of the organic matter on particulate form Hence, quite good organic matter removal is experienced in purely chemical plants


Tot N and C/N of some Norwegian WWTPs

WWTP	Size of plant (ca. persons	Year	Tot N, incoming water		C/N (BOD/TotN)	C/N (SBOD/NH ₄ -N)
	connected)		Yearly aver.	Min. – Max.	Yearly aver.	Yearly aver. (calculated)
Average 10 plants	> 10.000	1991	24,8	14,6 - 45,0	4,9	2,1
VEAS, Oslo	800.000	2024	30,6	15,1 – 49,4	3,8	1,8
BRA, Oslo	320.000	2024	27,7	13,6 - 42,2	4,3	1,6
SNJ, Stavanger	260.000	2024	37,7	14,0 – 52,0	6,0	2,3
Høvringen, Trondheim	150.000	2024	32,6	16,0 – 50,6	4,8	1,8
NRA, Lillestrøm	135.000	2018	30,6	14,7 – 52,2	4,0	1,5
LRA, Lillehammer	65.000	2019	52,6	27,4 – 88,5	5,5	2,1
GRA, Gardermoen	45.000	2020	61,0	30,0 – 82,0	3,6	1,4
NFRA, Nordre Follo	40.000	2020	44,7	13,0 – 74,8	2,8	1,5
SFRA, Søndre Follo	30.000	2022	56,0	35,0 – 75,0	3,7	1,4
MIRA, Midtre Follo	20.000	2024	66,4	35,0 – 95,0	4,6	1,7



Removal of nutrients in MBBR (FAN-project, 1988-92)


a. Pre-denitrification with post-precipitation

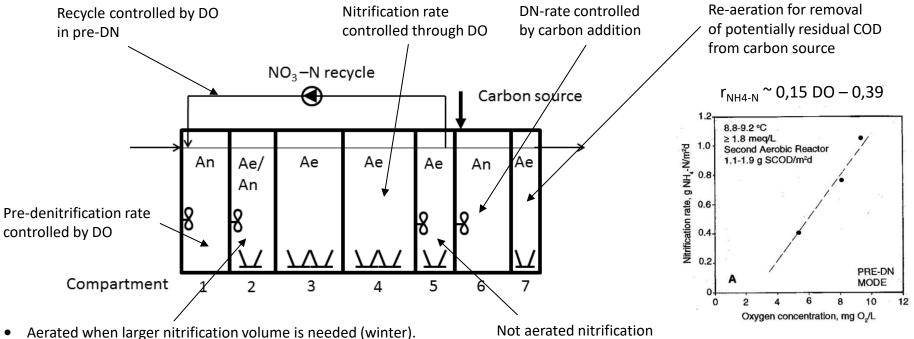
b. Pre-precipitation with post-denitrification

c. Combined pre- and post-denitrification

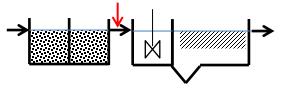

- Limited N-removal (< 70%)
- No need for external carbon source
- Require high in-coming C/N-ratio

- No limit to N-removal (> 90%)
- Need for external carbon source
- Independent of in-coming C/N-ratio

- No limit to N-removal (> 90%)
- Need for external carbon source
- Less dependent of in-coming C/N-ratio

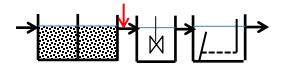

The Moving Bed Biofilm Reactor (MBBR) (1987-1990)

The combined pre- and post-DN MBBR process

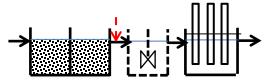

 Not aerated in summer – more pre-DN volume – higher recycle in summer Not aerated nitrification De-oxygenation - in order to reduce the amount of recycled O₂

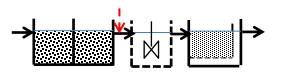


MBBR biomass separation alternatives

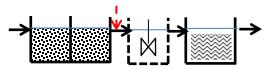

At high biomass concentration (primary sep.)

MBBR - Settling/Lamella settling

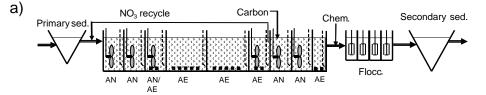

MBBR - Microsand ballasted lamella settling


SET AS

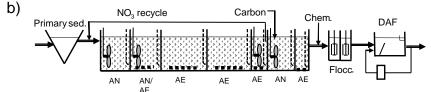
MBBR - Dissolved air flotation (DAF)


At low biomass concentration (secondary sep.)

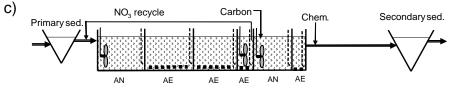
MBBR – Sand filtration



MBBR – Membrane (UF or MF) filtration

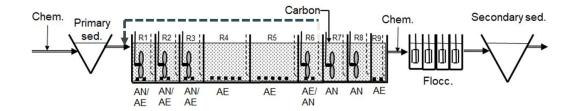


Experiences from four combined DN-plants


Lillehammer WWTP

Nordre Follo and Gardermoen WWTP

Nedre Romerike WWTP

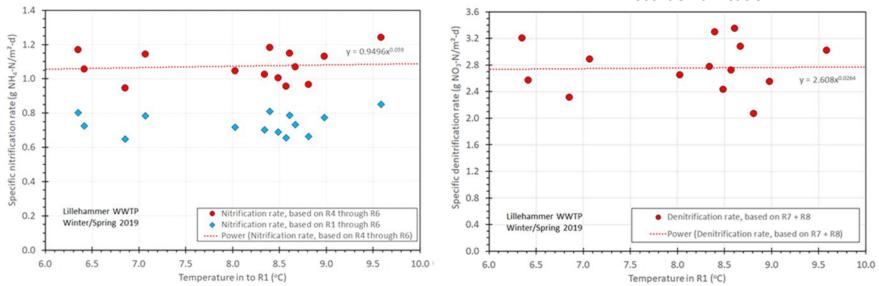


Lillehammer WWTP

Originally built in 1994 as a combined-DN plant, today post-DN (ethanol) with pre-precipitation

Parameter	Removal (%)		Effluent concentration (mg/l)	
	2018	2019	2018	2019
Tot. COD	96,5	96,2	25	25
Tot. P	98,4	98,1	0.11	0.11
Tot. N	82,3	77,3	10,3	11,6

• The average MBBR HRT over the spring of 2018 (01.04.18–01.06.18) was only around 3.5 hrs.

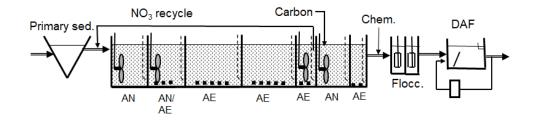

SET AS

Ødegaard, H. and Rusten, B. (2021) Wastewater treatment for N-removal in MBBR-based plants receiving cold wastewater - A knowledge compilation. Translated to Swedish in IVL-Report Nr: B2464, Stockholm, Mars 2023

Nitrification and post-denitrification rate Lillehammer spring/winter of 2019

Nitrification

Post- denitrification


- Reduced nitrification rate with decreasing temperature is compensated for by increased DO
- Reduced de-nitrification rate is compensated for by increased carbon source addition

SET AS

Rusten, B., Ødegaard, H. (2023) Nitrogen removal in MBBR plants at low temperatures - Experiences from Norway. Water, Sci. Technol., wst2023.154: https://doi.org/10.2166/wst.2023.154

Example: Gardermoen WWTP (GRA)

Built as combined-DN MBBR plant, with flotation (DAF) in 1998 Today expanded to triple capacity with same process + filtration

Parameter	Removal (%)		Effluent conce	ntration (mg/l)			
	2019	2020	2019	2020			
Tot. COD	97.0	95.9	22	27	Temperature, °C	2019	2
Tot. P	96.1	96.7	0.32	0.26	Average	11.2	1
Tot. N	84.0	86.8	11.2	7.9	Minimum	6.7	5

SET AS

Ødegaard, H. and Rusten, B. (2021) Wastewater treatment for N-removal in MBBR-based plants receiving cold wastewater - A knowledge compilation. Translated to Swedish in IVL-Report Nr: B2464, Stockholm, Mars 2023

Nitrification rates, Gardermoen WWTP 2019/2020

Nitrification rates, DO and temperature in R4+R5

1.6 1.6 (mg/l) Nitrification rate (g NH_{4} -N/m²-d) Nitrification rate (g NH_4 -N/m²-d) 1.4 \bigcirc \bigcirc n R5 \bigcirc 1.2 IZ 0.6589x0.1536 1.0 0.8 \bigcirc 0.8 0.6 \bigcirc DO (mg/l), 0.6 0.4 \circ \bigcirc 0.4 0.2 0.2 0.0 9.01.20 12.02.20 6.02.20 1.03.20 2.04.20 25.03.20 14.08.19 8.08.19 1.09.19 5.09.19 09.10.19 23.10.19 06.11.19 20.11.19 04.12.19 L8.12.19 01.01.20 5.01.20 08.04.20 05.05.20 20.05.20 03.06.20 0.0 5 8 10 12 13 14 15 16 Date Temperature in R4 (°C) • Nitrification rate ♦ DO in R4 + R5 ▲ NH4-N in R5 Temperature

Nitrification rates (in R4+R5) versus temperature.

SET AS

Rusten, B., Ødegaard, H. (2023) Nitrogen removal in MBBR plants at low temperatures - Experiences from Norway. Water, Sci. Technol., wst2023.154: https://doi.org/10.2166/wst.2023.154

Denitrification rates, Gardermoen WWTP 2019/2020

with corresponding temperatures and C/N-ratios.

Pre-denitrification rates in R1

1.8 () 0 Temperature (°C) Post-DN rate (g NOx-N/m²-d) Pre-DN rate (g NOx-N/m²-d) Only R1 anoxic ature 1.6 1.2 remp 1.2 1.0 TZ) C/N added (g COD/g NOx-N), 1.0 0.8 COD/g 0.8 0.6 0.6 C/N in MBBR (g 0.4 0.4 0.2 0.2 00 0.0 4.4.20 2.5.20 2.20 22.2.20 7.3.20 18.4.20 16.5.20 30.5.20 9.1.20 2.20 26.2.20 11.3.20 25.3.20 8.4.20 22.4.20 6.5.20 20.5.20 5.10.19 2.11.19 4.12.19 28.8.19 11.9.19 25.9.19 9.10.19 6.11.19 8.12.19 5.1.20 10.8.19 21.9.19 9.10.19 6.11.19 30.11.19 28.12.19 1.20 25.1.20 21.3.20 14.8.19 3.10.19 20.11.19 4.12.19 1.20 3.6.20 24.8.19 ø. Date Date Post-DN rate • Temperature • C/N added ▲ C/N in MBBR (g FCOD/g TN) ◆ C/N in MBBR (g TCOD/g TN) Pre-DN rate Temperature

Post-denitrification rates in R6

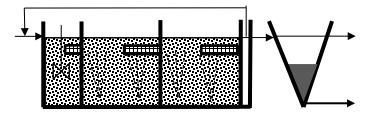
SET AS

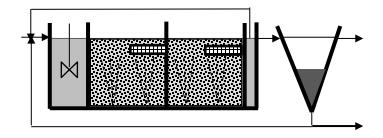
Rusten, B., Ødegaard, H. (2023) Nitrogen removal in MBBR plants at low temperatures - Experiences from Norway. Water, Sci. Technol., wst2023.154: https://doi.org/10.2166/wst.2023.154

Take home messages on N-removal in MBBRs

- Nitrification and denitrification in MBBRs are significantly influenced by temperature
- Nitrification rate is strongly (linearly) dependent on DO
- Reduced nitrification rate with decreasing temperature can be compensated for by increased DO

A nitrification reactor will have the same nitrification rate (0.5 g NH_4/m^2d) at

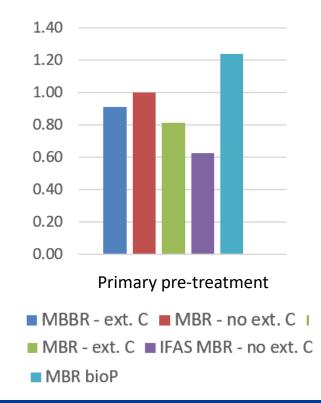

- \circ ~ 15 $^{\circ}\text{C}$ and a DO of 3.0 mg/l
- \circ ~ 10 °C and a DO of 5.0 mg/l
- \circ 6 °C and a DO of 7.5 mg/l
- Since DO increases with decreasing temperature, the reduced nitrification rate with reduced temperature is masked because of the increased DO
- The denitrification rate is strongly dependent on the type and dose of carbon source
- Reduced de-nitrification rate can be compensated for by increased carbon source addition


Two different uses of MBBR-based systems

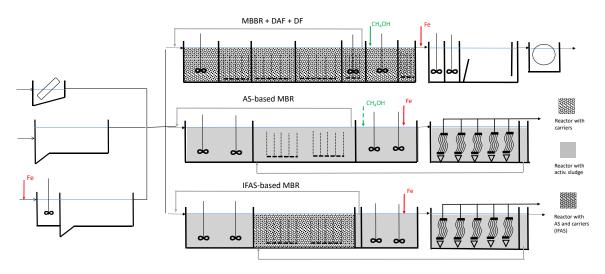
Moving bed biofilm reactor (MBBR)

 BOD-removal and nitrification take place in series – BOD-removal primarily in the attached biomass of the first reactor and nitrification primarily in the last

Integrated fixed film/activated sludge system (IFAS)



 BOD-removal and nitrification take place in parallel – BOD-removal primarily in the suspended biomass and nitrification primarily in the attached biomass


Systems comparison (2018)

Bioreactor volume index, 10 °C

- 1. Combined pre-and post-denitrification MBBR + DAF + DF
- 2. Combined pre- and post-denitrification AS MBR
- 3. Combined pre- and post-denitrification IFAS MBR (with three different pre-treatments)

SET AS

Ødegaard, H. (2018) MBBR and IFAS systems. Chapter 3 of: Mannina, G., Ekama, G., Odegaard, H. and Olsson, G. (2018) Advances in Wastewater Treatment. IWA Publishing, London. ISBN: 9781780409702

- Norway has been lagging behind the rest of Europe for 25 years, when it comes to N-removal. Hence N-removal represents now (after revised UWWD) a considerable challenge in Norway
- I strongly recommend that the Norwegian Environmental Authorities implement the revised UWWD as it is written, including standards for both % removal and effluent concentration
- We have >30 years of experience with the combined nitrification/denitrification MBBR process, that was developed during the «Removal of N» R&D program (FAN) in the early 90'ies (1989-1992)
- It is now well documented that this process solution is able to meet the revised UWWD with respect to the effluent standards for nitrogen under typical Norwegian wastewater conditions

