

About the case

- CLIENT IS DANISH OIL PIPE (DOP)
- DOP IS A PART OF ØRSTED, THE WORLDS MOST SUSTAINABLE POWER COMPANY
- THE PLANT IS LOCATED IN ON OF DENMARK'S INDUSTRIAL HUBS IN FREDERICIA
- TREATMENT OF PRODUCED WATER FROM DANISH OIL&GAS PRODUCTION IN THE NORTH SEA

 NEW TREATMENT SOLUTION WAS REQUIRED TO COMPLY WITH STRENGTHENED DISCHARGE PERMIT FOR THE TREATED PRODUCED WATER

Key challenges of the case

Raw water with extreme salinity

(60-70 g/l)

Strict regulations in both environmental and discharge permit

Highly variable raw water quality

COD* peaks up to 12,000 mg/L

suez

OPEX very important for the client

1/20/2025

Pilot tests proofed MBBR as a very robust biological treatment

DEMONSTRATION BY PILOTING

TIMEFRAME 2019-2023

FLOW UP TO 180 m³/d

TOTAL DISCHARGE 114.000 m³

COD INLET 1.000-12.000 mg/L

POSSIBLE TO ACHIEVE COD AND NITRIFICATION INHIBITION TARGETS IN THE EFFLUENT

2019

2021

2023

Up to 2050

SUEZ-MT Højgaard Commissioning of permanent plant of perman

PILOT PLANT

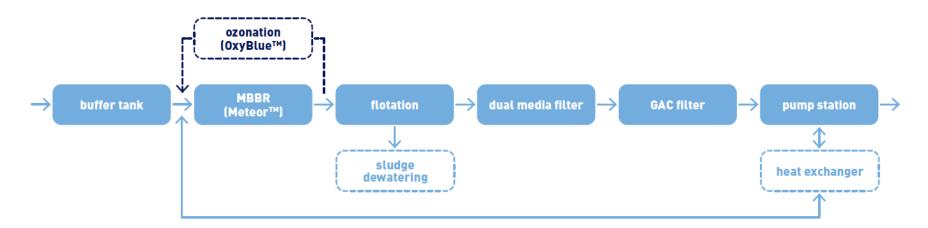
- Mobile treatment plant for feasibility study
- Capacity of treating up to 120 m3/d, expanded up to 180 m3/d of Produced Water
- Discharge requirements on nitrification inhibition (<20%)

PERMANENT PLANT

- Design flow of 700 m3/d of highly saline wastewater
- Secure, simple to use to cut down on operational expenses
- A local purifying procedure that considerably contributes to environmental benefits

Outlet requirements of permanent plant

Key criteria


 Have a COD concentration of ≤ 1000 mg/l.

OR

 Have a COD concentration of ≤ 2000 mg/l and a nitrification inhibition of ≤ 20%. Max nitrification inhibition must no go over 50%

Parameter		Units	Value
Temperature	Absolute	°C	50
COD	Absolute	kg/d	1 400
TSS	Absolute	mg/l	200
OIW	Absolute	mg/l	20
Total Nitrogen	Absolute	mg/l	150
Total Phosphor	Absolute	mg/l	20
Phenol index	Absolute	mg/l	1
Total sulphur	Absolute	mg/l	600
Sulphide	Absolute	mg/l	3
Sulphate	Absolute	mg/l	1 600
Chloride	Absolute	mg/l	50 000
рН	Absolute	-	6,5
	Absolute	-	9
Nikkel	Absolute	μg/l	70
Arsenic	Absolute	μg/l	13
Lead	Absolute	μg/l	100
Cadmium	Absolute	μg/l	3
Copper	Absolute	μg/l	100
Cobalt	Absolute	μg/l	10
Mercury	Absolute	μg/l	3
Selenium	Absolute	μg/l	8
Silver	Absolute	μg/l	250
Tin	Absolute	μg/l	60
Zink	Absolute	μg/l	3000
NPE	Guiding	μg/l	2
PAH	Guiding	μg/l	3
BTEX	Guiding	μg/l	1
THPS	Guiding	μg/l	3

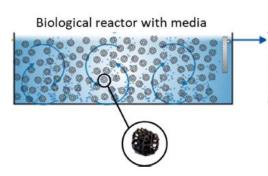
The permanent plant: An innovative multi-barrier approach Process flow diagram

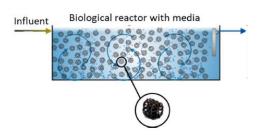
PROCESS SCHEME BASED ON PILOT PLANT

MULTI-BARRIER APPROACH INCLUDING FOLLOWING KEY STEPS:

- Biological treatment based on Moving Bed Biofilm Reactor (MBBR)
- Integrated ozonation
- Granular Activated Carbon (GAC) filter

The permanent plant





BIOLOGICAL PURIFICATION OF WASTEWATER BY MOVING BED BIOFILM REACTOR (MBBR)

- Meteor-MBBR combines a biological solution and a compact separation system
- Total volume of 2800 m³
- Biofilm media is integrated into each zone of the basin and equipped with retention screens
- Works continuously and does not require any washing of the materials
- Fixed biofilm provides natural protection for sensitive bacteria

TWO MBBR IN SERIES

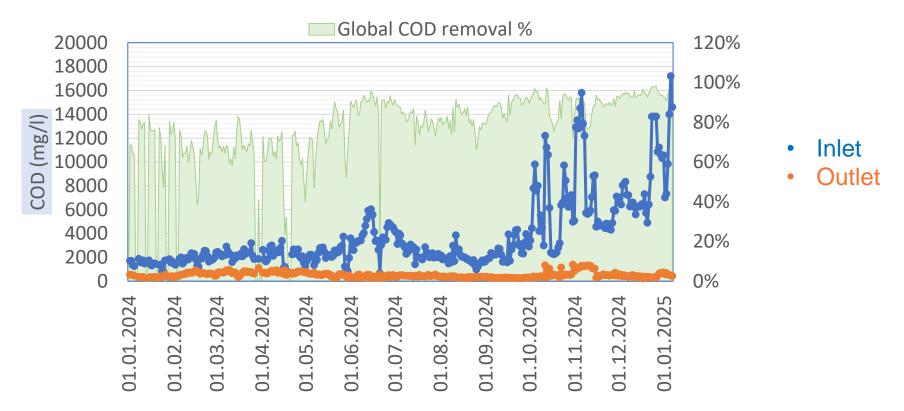
OXYBLUE Ozonation treatment

OXYGEN TANKS

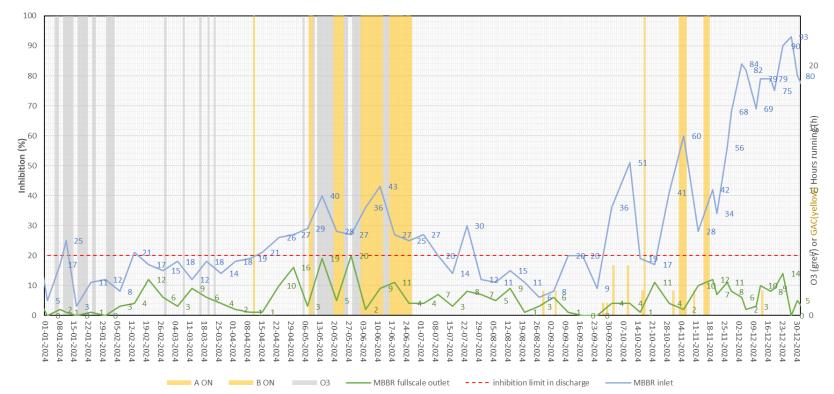
OZONE GENERATOR

POLISHING TREATMENT TO INITIATE AND BOOST THE RESIDUAL ORGANIC MATTER DEGRADATION PROCESS

- This treatment is implemented through a return pumping pipeline including an ejector where the ozone is dosed and mixed into the water phase
- 2 main units: oxygen tanks and ozone generator
- record level of COD elimination allowing discharge into sensitive environmental areas
- chemical / biological oxidation synergy allowing optimal elimination of persistent COD


FINAL POLISHING STEP TO TREAT LARGE VARIATIONS IN INLET WATER QUALITY AND BIODEGRADABILITY OF THE CONTAMINANTS

- Two identical sized filter arranged in series to enhance elimination of non-biodegradable compounds and to enhance process security
- Designed for downflow filtration
- Removes remaining hard COD and TSS in filtered water



GAC FILTER

COD reduction (without ozone and GAC)

Reduction of nitrification inhibition

Suez

The areas highlighted in orange indicate the operating periods of GAC filters A & B for a minimum of 24 hours. Grey areas indicate ozone operation in the MBBR recirculation loop for a minimum of 24 hours.

Inlet

Outlet

THANK YOU

Contact: thomas.bugge@suez.com

21/01/2025

