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Sammendrag
Representasjon av usikkerhet i 100-års nedbøren 
for flommodellering på nedbørfelt-skala: En 
MCMC tilnærming. Usikkerheter knyttet til 
estimering av nedbørsmengder er en av de viktig­
ste kildene til usikkerhet i flommodellering. 
Representasjon av disse usikkerhetene kan være 
utfordrende på grunn av ufullstendige histo­
riske data, klimaendringer og værets stokastiske 
natur. I denne studien ble det brukt en Baye­
siansk tilnærming med forkunnskaper om 
formparameteren for å tilpasse den generelle 
ekstremverdi (GEV) -fordelingen til årlige 
maksimalverdier for døgnnedbør. Metoden ble 
brukt for forskjellige datasett (stasjonsbaserte 
data, feltbaserte data og griddede data). Til slutt 
ble det valgt et konfidensintervall for 100-års 
nedbøren for hele nedbørfeltet. Resultatene 
illustrerer en betydelig forskjell i de beregnede 
konfidensintervallene avhengig av om man gjør 
en lokal analyse med stasjonsbaserte data, eller 
en analyse på nedbørfelt-skala med feltbaserte 
data eller griddede data. Funnene viser også at 
konfidensintervallene kan endres betydelig 
avhengig av den valgte perioden for analysene. 
Ingen signifikante trender i ekstremnedbør ble 
identifisert.

Summary
Uncertainties associated with the estimation of 
design rainfall is one of the major sources of 
uncertainty in flood modelling. Representation 
of these uncertainties can be challenging due to 
the incomplete historical data, climate change 
effect and the stochastic nature of the weather. 
In this study, a Bayesian inference with prior 
knowledge about the shape parameter was 
applied to fit the Generalised Extreme Value 
(GEV) distribution for annual maximum rain­
fall data. The method was used for different data 
sets (station-based data, catchment-based data, 
and gridded data) and finally, a range was 
selected as a 100-year design rainfall as the 
catchment precipitation. The results illustrate a 
considerable difference in the calculated ranges 
resulting from local scale analyses (station-
based data) and catchment scale analysis (catch­
ment-based and gridded data). The findings also 
show that the confidence intervals of the quan­
tiles can considerably change depending on the 
selected period for the analyses. No significant 
trends in extreme precipitation were found.
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Introduction
Estimation of design rainfall over a catchment 
area is an important task in engineering practice 
related to water resources and flood manage­
ment. However, due to the complex and chaotic 
nature of weather and precipitation generating 
processes, there is a considerable degree of 
uncertainty in the design rainfall estimates. This 
uncertainty will, in subsequent steps, contribute 
to uncertainty in design flood estimates, flood 
zone mapping and flood risk assessments. 
Assessing uncertainty in design rainfall estima­
tes is therefore an important task. Uncertainty 
sources for design rainfall estimates are the limi­
ted sample size, the aggregation of design rain­
fall from point measurements to the catchment 
scale, and climate variability and trends. The 
sample uncertainty is explained by the limited 
sample size, i.e., we need to estimate a design 
rainfall of 200 years return period based on 
much less than 200 years of data. The estimated 
design precipitation will therefore, in many 
cases, be higher than any observed precipitation. 
The actual areal precipitation is unknown since 
the precipitation is measured in gauges. The 
uncertainty in estimated areal rainfall depends 
on the spatial variability of the precipitation 
events that generate the extreme events. Con­
vective precipitation with a high spatial varia­
bility dominates in small catchments whereas 
stratiform precipitation dominates in larger 
catchments. Relatively small catchments far 
away from precipitation gauges have therefore 
the largest uncertainty in design rainfall estima­
tes.  The design rainfall for a catchment area will 
be smaller than the design rainfall for a point. 
Therefore, in engineering, area reduction factors 
(ARFs) are used to adjust design values from 
point measurements to the catchment area. 
Climate trends and changes introduce an addi­
tional challenge since the basic assumption of 
stationarity is no longer fulfilled resulting in a 
design rainfall that is time dependent. 

A large and growing body of literature has 
investigated different approaches and methods 
to estimate design rainfall. The most widely used 
methods is based on fitting a probability distri­

bution to annual maxima data. Extreme Value 
theory shows that the Generalized Extreme 
Value (GEV) distribution is the asymptotic dis­
tribution for maxima extracted from sufficient 
large blocks of data (Fisher and Tippett, 1928, 
Coles, 2001). The GEV distribution is therefore 
a good approximation for the maxima of long, 
but finite, sequences of random variables, such 
as annual rainfall maxima (Pelosi et al., 2020). In 
addition to the basic form of GEV distribution, 
the GEV model is applied in other forms such as 
mixed GEV distribution to account for different 
flood generating processes (e.g., Kedem et al., 
1990, Yoon et al., 2013) and nonstationary GEV 
distribution (e.g., Cunderlik and Burn, 2003, 
Leclerc and Ouarda, 2007, Agilan and Uma­
mahesh, 2017). As mentioned before, the non­
stationary GEV models are applied to 
non-stationary time series (i.e., series with 
statistical properties varying in time due to 
changes in the dynamic system) to reflect the 
effect of long-term climate change on a pheno­
menon. In the nonstationary case, the para­
meters of the model are expressed as a function 
of time t and possibly other covariates as well 
(Coles, 2001). Different examples of non­
stationary GEV models can be found in the 
works conducted by Khaliq et al. (2006), 
Cannon (2010), Um et al. (2017) and Ouarda 
and Charron (2019). One important and influ­
encing part in GEV modeling process is the 
length of time series. Ideally the longer time 
series are selected to fit the GEV distribution 
and for the shorter records ISO standard ISO 
19901-1 recommends to not use return periods 
more than a factor of four beyond the length of 
the data set (e.g., for the data covering a period 
of 30 years, the longest return periods that 
should be investigated is 120 years) (Vanem, 
2015). However, DeGaetano and Castellano 
(2018) showed that the use of long, nonstation­
ary precipitation records has the potential to 
yield precipitation-frequency estimates that are 
not representative of the current (or future) 
extreme rainfall climatology. 

When estimating design rainfall, we need to 
estimate the parameters of the GEV distribution 
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so that it gives the best possible fit to the 
observed data. Typical estimators are ordinary 
moments (OM), L-moments (LM), Maximum 
likelihood (ML), generalized maximum likeli­
hood (GML)) and Bayesian approaches. A 
comparative study of performance of different 
estimators can be found in the works presented 
by Martins and Stedinger (2000) and Kobierska 
et al. (2018). In most applications the l-moments, 
GML or Bayesian approaches are recommended 
since they are robust with respect to outliers and 
either explicitly or implicitly apply constraints 
on the shape parameter. Bayesian approach is 
now widely used for inference (e.g., Yan and 
Moradkhani, 2016, Lima et al., 2018, Lutz et al., 
2020). Some important advantages of the Baye­
sian methods are (i) the possibility to set prior 
information (i.e., on the shape parameter) (ii) 
the uncertainty in design flood estimates can 
easily be extracted and (iii) it is easy to introduce 
and make inference for non-stationary models. 
Many studies have proposed the Bayesian 
framework as a satisfactory method to estimate 
confidence intervals for flood quantiles (e.g., 
Martins and Stedinger, 2000, Renard et al., 2006, 
Lima et al., 2016, Lima et al., 2018). The Bayesian 
approach is also recommended by the Norwegian 
meteorological institute (Lutz et al., 2020). 

Estimation of design rainfall over an area/
catchment, is one of the subjects that has recei­
ved considerable attention in recent years. This 
issue is particularly important for rainfall-runoff 
modeling of extreme hydrometeorological 
events. There is a large volume of published 
studies describing methods to transfer local/
station measurements to larger scales such as 
catchment scale. Among the proposed methods, 
Area Reduction Factors (ARFs), are widely used 
to convert estimates of extreme point rainfall to 
estimates of extreme area-averaged rainfall 
(Wright et al., 2014). The design precipitation 
for a catchment area will decrease with increas­
ing catchment area due to the spatial averaging 
of precipitation and the transition from conve­
ctive to stratiform precipitation as the most rele­
vant extreme precipitation generating process. 
The target duration of extreme precipitation will 

also depend on catchment size. In Svensson and 
Jones (2010), different methods for estimating 
the ARF were critically reviewed. They reported 
that there is no obvious preferred method for 
estimating extreme areal precipitation.. Dyrrdal 
(2012) provided a summary of existing metho­
dology applied by the Norwegian Meteoro­
logical Institute (MET Norway) for estimating 
extreme precipitation in station sites and catch­
ments in Norway. She found that exciting 
methods are laborious and outdated, and pro­
posed a grid-based methodology as an alterna­
tive to using ARFs. An example of grid based 
methodology where the annual maximum area 
rainfall is extracted from gridded precipitation 
data is applied in Dyrrdal et al. (2016). They 
conclude that using a grid-based approach is 
efficient, and more objective than station-based 
methods combined with ARFs. However, the 
grid-based estimates are generally lower than 
the station-based estimates that use ARFs. 

In this study we want to demonstrate how the 
choice of approach affects the design precipitation 
estimates for one catchment in southern Nor­
way. The main goal of this study is to estimate 
100-year rainfall for a catchment with several 
precipitation stations inside or in the proximity 
(described in next section) with the associated 
uncertainty using both stations based and 
grid-based approaches. We compared estimates 
using three different approaches i) use annual 
maxima for each station (experiment 1), ii) the 
estimates from the previous step are combined 
to establish a mixture distribution (experiment 
2) and iii) use annual maxima from catchment 
average precipitation extracted from gridded 
precipitation data (experiment 3).  In (i) and (ii) 
ARF were used to get the catchment design 
rainfall. For all approaches, a Bayesian metho­
dology was used to estimate the design rainfall 
and the associated uncertainty. 

In addition to the proposed procedure, this 
paper aims to highlight the importance of time 
series length by comparing the estimated design 
rainfalls for different periods in the same station.
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Study area 
The study catchment is upstream the gauging 
station Flaksvatn in Tovdalselva river, located in 
Agder province (Norway) (Fig. 1). The catch­
ment area is 1867 km2. The mean annual preci­
pitation in the catchment is approximately 1260 
mm, with most of the rainfall occurring between 
October and March (about 60%) (Data collec­
ted from http://nevina.nve.no/). On 02.10. 2017, 
an extreme flood event occurred in the 
downstream parts of the river and inundated 
Birkeland city that is located beside this river. 
This event was the highest ever recorded flood 
in this river. The information of this event, 

measured at Flaksvatn station and Senumstad 
station (Fig. 1), is presented in Table 1. 

Data
Annual maximum daily rainfall data recorded 
from 6 stations operated by the Norwegian 
meteorological institute were collected from 
SeKlima.met.no. Information about the stations 
is listed in Table 2 and their locations on the 
map are displayed in Fig. 2. Two stations, namely 
Herefoss and Rislå have been relocated (about 
500 m and 700 m respectively) and are now 
operating as Herefoss and Senumstad stations. 
(The Meteorological institute has established 

Date Rainfall (mm) Max Water level (m) Max Discharge (m3.s-1)
30.09.2017 45.1 21.40 501.3

01.10.2017 173.1 24.57 1062

02.10.2017 63.6 25.56 1195

Table 1. Summary of the recorded data of the flood event in the study area. Discharge and precipitation data 
belong to Flaksvatn and Senumsatd stations, respectively. The max discharge 30.09 and 01.10 were observed at 
23:00, whereas the 02.10, the discharge culminated at 09:00

Figure 1. Tovdal river catchment and the study area
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homogenized time series that merge the obser­
vations from before and after the relocation). 
Among the stations presented in Table 2, 
Mykland station was removed from the study 
because of missing data in the daily rainfall 
records.

In Norway, estimates of daily precipitation 
on a 1x1 km grid, presented by MET Norway, 
can be found in www.seNorge.no. The gridded 
data are based on interpolation of observations 
at approximately 400 precipitation stations 
(Dyrrdal et al., 2016).  We used the gridded data 
to extract daily precipitation averaged for the 

catchment upstream the streamflow station at 
Flaksvatn (Fig. 1). Subsequently the annual 
maximum rainfall data for the years from 1961 
to 2019 were extracted. 

Methods
In this study, we used the annual maximum 
precipitation data and therefore assumed that 
the data follows the generalized extreme 
value (GEV) distribution (Jenkinson, 1955):

Eq. 1

where x is annual maximum rainfall, μ is the 
location parameter, σ is the scale parameter and where 𝑥𝑥 is annual maximum rainfall, 𝜇𝜇 is the location parameter, 𝜎𝜎 is the scale parameter and  
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Table 2. Operation periods and length of the recorded timeseries for the stations of the catchment

Station Operation period Time series length (years)
Dovland From Sep 1958 54

Herefoss From Jul 1895 123

Kjevik From Jun 1939 75

Mykland From Jul 1895 126

Senumstad-Rislå From Sep 1958 54

Tovdal From Jul 1895 95

Figure 2.The locations of stations
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In this study we selected the prior distribu­
tion for the GEV parameters, based on the 
recommendations in Martins and Stedinger, 
2000 and Lutz et al., 2020. Accordingly, we used 
uninformative prior distributions for location 
(μ) and scale (σ) and beta distribution for shape 
parameter (ξ~B(p=6, q=9)) which is defined on 
the interval [−0.5, 0.5].

We used a Markov Chain Monte Carlo 
(MCMC) algorithm to estimate the posterior 
probability distribution of the parameter set θ. 
We used the algorithm implemented in the 
R-package nsRFA (Viglione et al., 2020), where 
a Metropolis Hastings algorithm is implemen­
ted, and carried out 50,000 iterations to obtain a 
sample of the posterior distribution of the GEV 
parameters θ. This posterior sample of GEV 
parameters was subsequently used by the GEV 
distribution to provide a predictive distribution 
of the design rainfall (i.e., in our case the 100-
year rainfall where the cumulative GEV distri­
bution equals 0.99) in the form of a sample. 
From this sample the 90% prediction interval 
for the design rainfall was calculated.   

To transfer the climate change effects and 
possible future changes, the design rainfall 
values are multiplied by climate factors. The 
climate factors are calculated based on return 
period, rainfall duration, geographical location, 
reference period, scenario period and climate 

models (global/regional) (Hanssen-Bauer et al., 
2009). In this study the defined rainfall interval 
is multiplied by a climate factor equal to 1.2. The 
factor is selected based on the values reported 
by Hanssen-Bauer et al. (2009), for the case 
study region (Agder) under high emissions 
scenario (RCP8.5) (Table 3). In order to achieve 
design values that represent 24 hour duration 
and not a calendar day, we multiplied all 
estimates by 1.13 as recommended by the 
Norwegian meteorological institute (https://
klimaservicesenter.no/kss/vrdata/ivf-veiledning). 
Further, we needed to convert point (station) 
rainfall estimates to catchment-averaged esti­
mates for experiment 1 and 2 where station data 
were used. We used area reduction factor 
recommended by the Norwegian meteorological 
institute (https://klimaservicesenter.no/kss/laer-
mer/kraftig-nedbor). For daily precipitation in a 
catchment of 1867 km2, the ARF value is 0.88. 

Results and discussion
Following the approaches described in the 
previous section, the design rainfall ranges (or 
prediction intervals) were estimated using 
Bayesian MCMC and results are presented in 
Table 3 and Figs. 3 and 4, displays the 100-year 
design rainfall value with the associated pre­
diction intervals for each experiment.

Table 3. The prediction intervals (5% and 95% CI) for 100-year flood quantiles.

ID 100-year design rainfall (mm/day) ARF effect (*0.88)		
Climate factor (*1.2)		
Time resolution (*1.13) (mm/day)		
(ARF is not used for Experiment 3)

Experiment 1 ML 0.05 0.95 ML 0.05 0.95

Dovland 120 102 162 144 122 194

Herefoss 120 109 141 143 130 168

Kjevik 114 99 145 136 118 174

Senumstad 147 128 198 175 152 236

Tovdal 124 108 154 148 129 184

Experiment 2

Catchment 123 116 136 147 138 162

Experiment 3

Grid data 104 92 134 141 125 182
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Figure 3. Fitted GEV distributions following 
experiment 1 (Tovdal, Dovland, Herefoss, 
Senumstad, Kjevik) and experiment 2 (Catchment) 
and experiment 3 (Grid data).ML corresponds to 
maximum likelihood adjusted distribution 
(continuous line). For all experiments, the Climate 
change effect (factor 1.2) and representing of 24-hour 
duration (factor 1.13) is accounted for. In experiment 
1 and 2 the ARF (0.88) is applied to make sure that 
all estimates represent design precipitation for the 
catchment area.
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For experiment 1, we see from Table 3 and 
Fig. 4 that the highest design rainfall value (ML) 
and its confidence intervals is estimated for 
Senumstad station, and the lowest values are 
obtained for Kjevik (lowest ML and 5% CI) and 
Herefoss (lowest 95% CI). From the table it can 
be seen that the data from the stations Tovdal, 
Kjevik and Dovland results in rather similar 
ranges. 

Comparing the ranges obtained from experi­
ment 1 and 2, it can be seen that the second 
experiment (catchment) leads to more narrow 
prediction intervals whereas the ML estimate is 
practically similar to the estimated design preci­
pitation at the Tovdal station and slightly smal­
ler than the average of the design rainfall 
estimated at each station.

Using the gridded data in experiment 3 (Grid 
data) results in slightly smaller ML estimates 
than the values obtained from experiment 1 and 
2. The only exception can be seen for Senumstad 
station, which is considerably higher than the 
Grid-based ML value, and Kjevik which corre­
sponds to smaller ML value. Likewise, the 5% 
CI value for the grid-based estimate is lower 
than the other stations except for Dovland and 

Kjevik, whereas the 95% CI value is below the 
values obtained from Dovland, Senumstad and 
Tovdal.

The results from experiment 1 shows that 
using data from only one precipitation station 
when estimating a design rainfall for a large 
catchment might be challenging since the selec­
ted station might not be representative for the 
whole catchment. In this study, Senumstad pro­
vides the highest estimates (147 mm) whereas 
Kjevik provides the lowest estimate (114 mm). 
Using several precipitation stations inside and 
close to the catchment, allows us to provide 
more robust estimates. 

The estimates from Herefoss, Dovland, 
Kjevik, Tovdal and SeNorge are not significantly 
different, and the estimates are practically simi­
lar. This shows that for this particular catch­
ment, the gridded data are useful for estimating 
design rainfall, and we avoid the use of ARFs 
and the need to select one particular precipita­
tion station. Since we in this study do not want 
to under-estimate the uncertainty, we selected 
to use the estimates from Dovland station. 
However, we recognize, that in areas with a 
larger spatial variability in precipitation, the use 
of one single station would be even more 
challenging. 

One important issue that should be considered 
in time series analyses, is the selection of the 
length of the time series. To investigate the effect 
of time series period on the estimated design 
rainfall, various time spans that consist of the 
most recent 30, 40, 50, 60, 70,80, 90 and 100 
years of data were used to estimate the 100-year 
design rainfall and the results are displayed in 
Fig. 5 for each of the stations. According to the 
results, the changes in the modified ML estima­
tes are not significantly different (Fig. 5 (a)). 
Unlike the ML line, the variation in upper 
bound (0.95 CI) is considerable when moving 
from shorter to longer periods. A decreasing 
trend can be observed in 0.95 CI values by 
increasing the data length. However, there are 
exceptions such as in Kjevik (70 years), Tovdal 
(90 years) and Senumstad (50 years). The varia­
tion of 0.95 CI line can to a large degree be 

Figure 4. Comparing the estimated 100-year design 
rainfall values resulted from experiment 1 (Dovland, 
Herefoss, Kjevik, Senumstad and Tovdal), experiment 
2 (Catchment), and experiment 3 with grid data. 
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attributed to the uncertainty in the estimated 
shape parameter which depends on the length 
of data. 

According to Fig. 5, using the longer time 
spans narrows down the estimated interval or in 
other words results in smaller uncertainties. 
This is a direct effect of the increasing sample 
size that decreases the sample uncertainty. In 
extreme value analysis, there is a strong traditi­
on for using the maximum possible amount of 
data when estimating design values to reduce 
estimation uncertainties. However, in the pre­
sence of changes in the climate, using long time 
series might result in biased estimates. Detecting 
trends in extremes is challenging since strong 
variability from year-to-year masks possible 
trends. To investigate the presence of trends in 
location and scale parameters, the nonstationary 
GEV models were developed and tested for each 
of the stations (location and scale parameters as 
time varying parameters) and no significant 
trends were found, neither in the location nor 
the scale parameters. A stationary model was 
therefore used for this catchment.

Conclusions
In this study, a Bayesian inference is used along 
with prior knowledge about the shape parame­
ter to fit the Generalised Extreme Value (GEV) 
distribution for annual maximum rainfall data. 
The method was used for three experiments. 
Firstly, the method was applied for each station. 
Secondly, the estimated posteriors of the stations 
were merged into one sample and the design 
rainfall range was identified. Thirdly, the catch­
ment average precipitation from SeNorge was 
used in the estimations. The results of the expe­
riments were compared with each other. 
Furthermore, the effect of selecting different 
periods to estimate the quantiles intervals were 
assessed. The main results of this paper are as 
follows:
•	 Using precipitation data from only one 

station to estimate design rainfall might 
result in biased estimates. Hence, it is better 
to use several stations within or close to the 
target catchment.

•	 Using one sample involving all the posteriors 
(experiment 2, catchment-based scenario) 

Figure 5. a. The effect of time series length on the estimated 100-year design rainfall (the middle black line 
presents the ML values, and the upper and lower lines display the 95% and 5% CI). b. the variation ranges for 
ML values displayed in panel a.
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may narrow down the estimated design 
rainfall interval but it may result into small 
predictive uncertainty and therefore fail to 
cover possible extreme events. 

•	 Using gridded precipitation data gave similar 
results to using station-based data combined 
with area reduction factor.

•	 The length of the time series and the number 
of years that are representing the extremes is 
a trade-off between having sufficient data to 
reduce sampling uncertainty and avoiding 
possible non-stationarities in the extremes. 
For this study, the stationarity assumption 
was fulfilled.

The estimated 100-year precipitation based 
on the data from Dovland was selected to be 
used to represent the uncertainty in design pre­
cipitation and will be used for further analysis of 
flood zones. We believe that the prediction 
range is in particular useful for risk-assessments 
and could also be used to provide safety factor 
that reflects the knowledge (and uncertainty) in 
our estimates and are therefore more tailored to 
each application.
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