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Sammendrag
Multippel lineær regresjon som verktøy for å 
estimere mikrobielle konsentrasjoner i en drikke
vannskilde: Eksempel fra Glomma. Formålet 
med studien var å utvikle regresjonsmodeller som 
kan estimere innholdet av mikroorganismer i 
råvannskilden (Glomma) til Nedre Romerike 
Vannverk (NRV) basert på fysisk-kjemiske 
målinger i råvannet. De mikrobielle dataene for 
råvannet (responsvariabler) bestod av overvåkede 
(1999 - 2012) indikatororganismer ved NRV, 
samt konsentrasjoner av norovirus og adenovirus 
samlet inn (2011 - 2012) gjennom forskningspro-
sjektet VISK, som hadde som mål å bedre kunn-
skapen om vannbåren virussmitte i Skandinavia. 
Fysisk-kjemiske data (forklaringsvariabler) 
bestod av overvåkede vannkvalitetsparametre ved 
NRV og hydrologiske data for Glomma. For hver 
av mikroorganismene ble en multippel lineær 
regresjonsmodell utviklet og systematiske meto-
der ble brukt for å ekskludere ubetydelige 
responsvariabler. Mengden variasjon i mikrobi-
elle konsentrasjoner som kunne forklares ved 

korrelasjoner med de fysisk-kjemiske forklarings-
variablene lå mellom 40 % (adenovirus) og 72 % 
(E.coli). Dette viser at regresjonsanalyse i noen 
grad kan brukes til å estimere mikrobielle kon-
sentrasjoner i vannkilden basert på lett tilgjenge-
lige fysisk-kjemiske data. Slike modeller kan 
inngå i vannverkets overvåking av råvannskvali-
teten, og potensielt bidra i systemer for tidlig 
varsling av forverret mikrobiell råvannskvalitet.

abstract
Regression models were developed for estimating 
the microbial content in the raw water source 
(Glomma) of Nedre Romerike Vannverk (NRV) 
using physicochemical data from the raw water 
and catchment area. The microbial data (response 
variables) consisted of monitored (1999-2012) 
indicator organisms at NRV and norovirus/
adenovirus concentrations collected (2011-2012) 
at NRV through an EU funded project (VISK) to 
increase the knowledge of waterborne viral infec-
tions in Scandinavia. The physicochemical data 
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(explanatory variables) consisted of monitored 
water quality parameters at NRV and hydrologi-
cal data for Glomma. For each organism, a multi-
ple linear regression model was developed using 
systematic procedures to exclude insignificant 
response variables. The amount of variance in 
microbial concentrations that could be explained 
by correlations with the physicochemical 
response variables ranged from 40 % for adeno-
virus to 72 % for E.coli. This shows that multiple 
linear regression analysis has some potential for 
estimating the microbial load in a water source 
based on easily monitored physicochemical para-
meters. Such analysis could become part of the 
routine monitoring of raw water quality at a tre-
atment plant, and possibly assist in early warning 
systems for microbial contamination.

Key words: multiple linear regressions, 
microbial load, microbial source water quality.

Introduction
There is an extensive array of microbial and phy-
sical/chemical constituents of drinking water 
sources that can cause either acute or chronic 
detrimental health effects if the water is not 
treat ed properly. In general, monitoring of micro-
bial parameters is more expensive and time con-
suming than monitoring physicochemical 
parameters. This is especially true for pathogens, 
whose enumeration usually requires large volume 
samples and elaborate concentration procedures 
(which is why regulations are based on indicator 
organisms instead). It would therefore be of inte-
rest to have a statistical model that can usefully 
estimate microbial parameters based on more 
easily monitored physicochemical variables. The 
aim of this work is to develop such a model.

Pathogens present in surface waters originate 
from both point and diffuse sources and concen-
trations may vary significantly in time. Point 
sources of contaminants include wastewater 
discharges from the municipality and conside-
rably polluted tributaries within a river system. 
Diffuse sources include agricultural and forestry 
runoff with microbial constituents from domes-
tic and wild animals in the catchment area. 
Furthermore, the microbial load to the raw water 

within the catchment is influenced by natural 
environmental factors, such as topography, 
hydrology, and climatological parameters (rain, 
sunlight and temperature) (Mills and Thurman 
1994; Kinzelman et al. 2004).

To produce hygienically safe drinking water 
from surface water sources, pathogens in the raw 
water must be significantly removed and/or 
inactivated by the water treatment processes. To 
optimize the treatment processes for pathogen 
removal, and thus provide good quality potable 
water in an economical manner, the ability to 
monitor and possibly predict the pathogen con-
tent of raw water is desired by the water treat-
ment industry. It could allow advance warning 
of changes in microbial concentrations that 
require alteration of process conditions (Astrom 
et al. 2007a; Han et al. 2012; Sedmak et al. 2005).

Thus, there are at least two possible benefits 
to be gained from a statistical model that corre-
lates microbial and physicochemical data: (1) It 
provides information that the treatment plant 
could use to optimize its operation in the short-
term and (2) it can give clues to the sources of 
microbial contamination in the catchment, and 
hence provide useful information for long-term 
catchment management practices. There is an 
increasing focus on improving water quality at 
the catchment scale in order to ensure safe drink-
ing water at reasonable treatment costs (Won et 
al. 2013; Astrom et al. 2007b). However, few sys-
tematic studies have been undertaken to model 
and predict microbial raw water quality based on 
available physicochemical parameters (Kubeck 
et al. 2009; Zhang and Stanley 1997).

Among modelling approaches, multiple 
linear regression analysis is a relatively simple 
statistical method used to examine the correla-
tion among variables. The present study is aimed 
at developing regression models that can usefully 
estimate the content of indicator organisms and 
norovirus/adenovirus in the raw water based on 
physicochemical data from the raw water intake 
at a treatment plant and the nearby catchment 
area.

Study area and Data
Glomma River Basin
The Glomma river is the largest river in Norway 
(Fig. 1), located in the southeastern part of the 
country where it covers 41,200 km2 (13 % of the 
country’s total area). The northwestern part of the 
basin is dominated by high mountains. The east-
ern part is covered with forest whereas the central 
and southern part comprises large agricultural 
areas. The agricultural area covers 5.8 % of the 
catchment area. The Glomma river basin contains 
lake Mjøsa, the biggest lake in Norway with a sur-
face area of 350 km2. The mean annual flow of the 
river at Solbergfoss (the lowermost reservoir) is 
700 m3/ s. The flow usually varies from 150 m3/s 
to 3500 m3/s during the year. Approximately 
675,000 inhabitants live in the catchment area 
(Grizzetti B. 2007).

Data
Norwegian drinking water regulations (Drikke-
vannsforskriften) specify that water utilities rou-
tinely monitor the raw water concentrations of five 
microbial indicator parameters: Heterotrophic 

Plate Count (HPC), Clostridium perfringens, intes-
tinal enterococci, Escherichia coli, and coliform 
bacteria. This study is based on records of moni-
toring data for these parameters from Nedre 
Romerike Vannverk (NRV) drinking water treat-
ment plant. The data consist of weekly records of 
raw water concentrations for E.coli and coliform 
bacteria from 1999 to 2013, for intestinal entero-
cocci from 2002 to 2013, and for HPC and 
C.perfringens from 2005 to 2013. However, some 
records are missing and during analysis the miss-
ing values were treated as missing data (not 
replaced with mean or neighbourhood values). In 
addition to the indicator concentrations, the study 
includes records from 16 months (January, 2011 
to April, 2012) of virus concentrations moni toring 
in the same raw water source, obtained by the 
(former) Norwegian School of Veterinary Science 
as part of the VISK project, an EU funded project 
intended to increase the knowledge of waterborne 
viral infections in Scandinavia. The record inclu-
des adenovirus (85 observations), norovirus GI 
(genogroup I, 71 observations), norovirus GII 
(genogroup II, 62 observations).

Figure 1. Study catchment showing Glomma River and its main tributaries, discharge gauging 
stations, and the NRV water treatment plant. Base map source: (Grizzetti B. 2007).

Glomma River Basin
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The selection of explanatory variables was 
based on theory and availability of data. Since 
the raw water concentrations of indicator micro-
organisms and viruses partly reflect the overall 
conduciveness of the environment for transport 
and survival, physicochemical parameters may 
be expected to be correlated to microbial para-
meters (Crowther et al. 2001). First, in order to 
consider the attributes of the environment, raw 
water temperature, rainfall (arithmetical mean 
precipitation from 13 gauging station), pH, tur-
bidity, electrical conductivity, colour and total 
organic carbon were selected to represent the 
physicochemical parameters of the environment. 
Secondly, in order to track the source area asso-
ciated with the microbial parameters, five river 
discharge records from different positions of the 
river were also included. All regression analysis 
and graphical presentations in this study were 
performed by Addinsoft’s XLSTAT 2012 Statis-
tical Software (XLSTAT 2012).

Statistical analysis
Descriptive Statistics and Correlation 
Analysis
Descriptive statistics is useful for exploring and 
examining the basic features of the data prior to 
applying statistical tests and fitting statistical 
models. The most important descriptive statistics 
are (1) central tendency, most often given by the 
mean or the median; (2) variability, which indi-
cates the dispersion or spread of the data set, 
most often given by the variance and/or standard 
deviation; (3) skewness, which indicates the 
extent to which the data are asymmetrically dis-
tributed about the mean. Positive skewness indi-
cates a longer right hand side tail of the 
distribution; negative skewness indicates a longer 
left tail. Finally (4) there is kurtosis, which indi-
cates whether the data are comparatively concen-
trated toward the mean value; it shows the degree 
of flatness of the distribution near its center. Posi-
tive kurtosis indicates that the distribution is 
more peaked than the normal distribution; nega-
tive kurtosis indicates a relatively flat distribution 
(Bulman and Osborn 1989; Obrien and Shampo 
1981; Cheong 1978; Pikkemaat 1969).

Correlation is a statistical concept used to 
express how strongly pairs of variables are 
related. In this study, we used Pearson’s correla-
tion coefficient which is designated by the letter 
“r”, and measures the strength of the linear rela-
tionship between two variables. It ranges from -1 
to +1; the closer r is to -1 or +1, the more strongly 
the two variables are related. If r is close to 0, it 
means there is no relationship between the vari-
ables (Williams 1996; Mudelsee 2003; Gravier et 
al. 2008).

Multiple Linear Regression Analysis
Multiple Linear Regression (MLR) analysis is a 
statistical procedure that is used to examine more 
closely the relationship between a number of 
independent (explanatory) variables and the 
dependent (response) variable by fitting a linear 
(in the parameters) equation to observed data. 
The goal of MLR is to find an equation that can 
predict the dependent variable as a function of 
several independent variables (Coelho-Barros et 
al. 2008). The MLR equation, given n observa-
tions, is given by:
 

 

(1)

where y is the dependent variable (indicator micro-
organisms and viruses), x1, x2..., xk are the inde-
pendent variables (physicochemical parameters), 
and i indexes the n sample observations, β0 is the 
y intercept (the value of y when all of the explan-
atory variables x1, x2..., xk are equal to zero), β1, β2, 
…, βk  are the estimated multiple regression 
co efficients (each regression coefficient represents 
the change in the dependent variable relative to a 
unit change in the respective independent vari-
able), and the term ɛ is a random error term 
(Agirre-Basurko et al. 2006; Ferraro and Giordani 
2012; Kovdienko et al. 2010). After fitting an 
MLR model (i.e. estimating the parameters from 
data), certain tests of hypotheses about the model 
parameters are useful in measuring model ade-
quacy. Some points are very crucial and decisions 
have to be made about the model by answering 
the following questions:

•	 Is	the	fitted	regression	model	significant?	
That is, one or more of the independent 
 variables in the regression model useful in 
explaining the dependent variable and/or 
predicting future values of the dependent 
variable?

•	 Does	every	single	independent	variable	con-
tribute	to	explaining	the	dependent	variable?	
Or would the regression model be just as 
valuable if some of the independent variables 
are	removed	from	the	model?

•	 How	good	do	the	data	points	fit	the	statistical	
model?

Testing for Significance of the Overall 
Regression Model
The overall significance of the fitted MLR model 
can be tested with the so called F-ratio of the 
explained to the unexplained variance. The F-test 
tests whether the regression model as a whole is 
significant or not through the analysis of vari-
ances (ANOVA). The F-ratio follows an F distri-
bution with k-1 (model) and n-k (error) degrees 
of freedom for the nominator and denominator 
respectively, where n is number of observations 
and k is the number of parameters estimated. The 
test statistics (F-test) is given by:

     (2)

where MSR is the  mean square error of the 
regression and MSE the mean square error of the 
residuals (Pugh et al. 2001; Kufs 1992). The 
hypotheses for the F-test in MLR are:
Null hypothesis, H0: all the coefficients are equal 
to zero: β1 = β2 = ... = βk = 0 

This implies that none of the independent 
variables are significant predictors of the 
response variable.

Alternative hypothesis, HA: at least one coef-
ficient is not equal to zero: βj ≠ 0 for at least one 
j. This implies that at least one of the indepen-
dent variables is a significant predictor of the 
response variable.

Interpreting results: If we reject H0, we con-
clude that the relation is significant, which 

means the model does have explanatory or pre-
dictive power. If we fail to reject H0, we conclude 
that there isn’t any evidence of explanatory 
power, which suggests that there is no point in 
using this model. The level of significance (α) was 
chosen as 0.05.

Testing for the Significance of a Single 
Independent Variable in the Model
These tests are useful in determining the predic-
tive power of each of the explanatory variables in 
the regression model. The regression model 
might be more useful with the inclusion of addi-
tional explanatory variables or perhaps just as 
useful with the removal of one or more of the 
explanatory variables presently in the model. A 
t-test on an individual regression coefficient is a 
test of its significance, given the presence of all the 
other explanatory variables in the model. The 
t-test statistic is given by:
    
 (3)

where Sβj is the standard error of the respective 
coefficient βj (Vounatsou and Karydis 1991). The 
statistic follows a t-distribution with n - p degrees 
of freedom, where n is the number of observa-
tions and p is the number of predictors. The 
hypotheses for the t-test in MLR are:
Null hypothesis, H0: The variable does not contri-
bute in this model and should be excluded from 
the model, which is expressed as: βj = 0.

Alternative hypothesis, HA: The alternative is 
that the explanatory variable does contribute and 
should remain in the model: βj ≠ 0.
Interpreting results: If H0 rejected, one can con-
clude that the independent variable xj does have 
explanatory or predictive power in the model. If 
H0 is not rejected, one can conclude that there 
isn’t any evidence of explanatory power of inde-
pendent variable xj. That indicates that there is no 
point in having xj in the model and one should 
consider removing it and re-running the regres-
sion analysis. The level of significance (α) for the 
inclusion and/or removal of an explanatory vari-
able in the model was set to 0.05.
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Goodness of Fit of the Regression Model
The extent to which the independent variables 
explain the behavior of the dependent variable 
can be examined by using two statistical mea-
sures, namely R squared (R2) and adjusted R 
squared (R2

adj). In regression analysis, the coeffi-
cient of determination R2 is a statistical measure 
of how good the regression line estimates the real 
data points. The adjusted R2 is a modification of 
R2 that adjusts for the number of independent 
variables in the model. Unlike R2, the adjusted R2 

increases only if the new term actually improves 
the model. The R2 assumes that every explanatory 
variable in the model helps explain variation in 
the dependent variable. So, it may be interpreted 
as the percentage of explained variation assuming 
that all explanatory variables in the model affect 
the dependent variable (i.e. each explanatory 
variable passes the t-test). In contrast, the 
adjusted R2 gives the percentage of variation 
explained by only those explanatory variables that 
truly affect the dependent variable (only those 
explanatory variables that pass the t-test) and 
penalizes the addition of independent variables 
that do not belong in the model. The Mean 
Squared Error (MSE) and its square root, Root 
Mean Squared Error (RMSE), measure the dis-
tance between the fitted line and data points. R 
squared, adjusted R squared, MSE, and RMSE are 
calculated by:
    

(4)
    

     (5)

       
     (6)

      
    (7)

where SSE is the sum of squared errors, SST is the 
total sum of squares, n is the number of observa-
tions and k is the number of independent variables 

(Archer and Lemeshow 2006; Fagerland and 
Hosmer 2013; Yang et al. 2011).

Detecting Multicollinearity Using Variance 
Inflation Factors
Multicollinearity refers to a situation in which 
two or more explanatory variables in multiple 
regression models are highly inter-correlated. 
When a high level of multicollinearity exists, the 
variances of the regression coefficients are infla-
ted. Multicollinearity increases the standard 
errors of the coefficients and by overinflating the 
standard errors, it makes some variables statisti-
cally insignificant when they should be significant. 
The Variance Inflation Factor (VIF) quantifies the 
severity of multicollinearity in an ordinary least 
squares regression analysis. It provides an index 
that measures how much the variance (the square 
of the estimate’s standard deviation) of the esti-
mated regression coefficient is increased because 
of collinearity. VIF is calculated for the jth regres-
sion coefficient as:
      

    (8)

where is the coefficient of determina-
tion between xj (treated as the a dependent variable) 
and all the other explanatory variables. There is 
no formal VIF value for determining presence of 
multicollinearity. Values of VIF that exceed 10 are 
often regarded as indicating multicollinearity. 
(Ukoumunne et al. 2002). 

Checking Multiple Linear Regression 
Assumptions
In order to utilize the proposed multiple regres-
sion model, it is essential to test and verify that 
the proposed equation satisfies the assumptions. 
The assumptions of MLR are: (1) homoscedasti-
city (The variance of the error term is the same 
for all values of the independent variables), (2) 
linearity (The predicted value of dependent 
va riable is a straight-line function of each inde-
pendent variable, holding the others fixed), (3) 
independence (independence of the errors or no 

serial correlation), and (4) normality (For any set 
of values of the independent variables, the error 
term is a normally distributed random variable). 
With the intention of assessing whether the 
assumptions are satisfied, it is common to plot the 
residuals and to look for curvature, as done in 
this study.

Results and Discussion
Table 1 summarizes the descriptive statistics of 
the variables in the study. It is clear that the vari-
ance of all microbial variables are quite high, in 
particular for HPC and intestinal enterococci, 
and the distribution of intestinal enterococci is 
positively skewed as compared with the other 
microbial variables. The range is not a very stable 
measure of variability but it gives a quick estimate 
of variability in the data set. Therefore, it is pos-
sible to see the range of variability in each water 

quality variables. The raw water temperature 
ranged from 0.9 oC to 21.5oC while the pH, turbi-
dity, conductivity, colour and total organic carbon 
varied from 5.7 to 7.8, 0.1 to 570 NTU, 1.3 to 9.2 
mS/m, 3 to 87 mg pt/l, and 1 to 8.8 mg C/l, respe-
ctively.

The physico chemical parameters, highly 
interrelated with each other, are river discharge 
with temperature: (r = 0.63 to r = 0.84); electric 
conductivity with pH: (r = 0.60); colour with 
total organic carbon: (r = 0.58). Among the phy-
sico chemical and microbial water quality para-
meters, pH has strong positive correlation with 
indicator organisms (r = 0.58 to r = 0.82) but 
relatively weak correlation with virus concentra-
tion (r = 0.04 to r = -0.23). Moreover, electrical 
conductivity has strong positive correlation with 
indicator organisms (r = 0.41 to r = 0.65) and also 
with virus concentration (r = 0.47 to r = 0.54). 

Table 1. Descriptive statistics of explanatory variables and raw water microbial variables.

Variables N Mean St.dev. Variance Skewness Kurtosis Min Q1 Median Q3 Max
River discharge gauging stations
Rånåsfoss (m3/s) 411 705 375 140644 1.16 1.10 136.4 425.7 592.9 897.3 2451.2

Blaker (m3/s) 341 646.7 325.2 105780 1.51 3.74 98.1 425.8 567.9 789.2 2471.9

Funnefoss (m3/s)         547 367.0 190.7 36364 0.84 0.91 125.3 191.2 336.2 502.3 1243.7

Ertesekken (m3/s)          492 355.1 200.9 40386 1.29 1.36 63.3 207.8 301.0 441.0 1110.5

Vorma (m3/s) 385 272.6 244.7 59901 1.13 1.22 61.7 153.0 216 280.3 1153.4

Physicochemical factors
Raw water temperature (oC)  315 8.4 5.8 34 0.35 -1.2 0.9 2.7 7.4 13.4 21.5

Rainfall (mm) 462 1.13 1.86 3.45 1.73 1.98 0.0 1.1 2.1 3.8 8.5

pH    531 7.1 0.3 0.10 -1.3 2.96 5.7 6.9 7.1 7.2 7.8

Turbidity (NTU)           530 4.6 25.7 662.1 20.36 443.5 0.1 1.1 1.9 3.4 570

Conductivity (mS/m)       527 4.2 0.8 0.69 0.26 4.68 1.3 3.9 4.3 4.6 9.2

Colour (mg Pt/l)          546 29.4 12.7 162.6 1.26 1.59 3.0 21.0 5.0 35.0 87.0

Total organic carbon (mg C/l) 287 4.1 1.3 1.78 0.80 0.60 1.0 3.0 3.8 4.9 8.8

Microorganisms in the raw water
HPC (count/ml) 298 1062 1764 3110893 3.9 20.2 1.0 200 420 1100 14000

C.perfringens (count/100ml)  302 6.6 6.8 46.6  3.1 16.6 1.0 1.0 5.0 9.0 59.0

Intestinal enterococci (count/100ml) 456 71.2 938.5 880797 20.7 437.3 1.0 2.0 7.0 19.0 1986

E.coli (count/100ml)   547 41.6 46.6 2168 4 34.2 1.0 10.0 30.0 55.0 579

Coliform bacteria (count/100ml)  547 243.3 374.2 140023 5.2 35.1 1.0 78.0 160 260 4106

Adenovirus (count/ml) 85 85.6 157.1 24669 3.5 14.5 0.09 4.0 26.6 100 977.8

Norovirus (GI) (count/ml) 71 26.5 35.5 1260 2 3.6 0.23 4.8 11.9 28.5 148.8

Norovirus (GII) (count/ml) 62 102.1 134 17945 1.7 2.3 0.18 11.4 38.9 155.7 525



 342   343  Vann I 03 2014 Vann I 03 2014 

Innsendte artIkler Innsendte artIkler

This shows that with increase or decrease in the 
values of electric conductivity also exhibits 
decrease or increase in the value of indicator 
organisms and viral concentration in the raw 
water but with the increase or decrease in the 
value of pH exhibits decrease or increase in the 
value of indicator organisms only. The weak cor-
relation between river discharge and microbial 
water quality (r = -0.32 to r = 0.31) could be 
explained by the dilution effect of the discharge 
volume. 

In regression analysis, logarithmically trans-
forming variables is the most common means of 
transforming skewed variables into more appro-
ximately normally distributed variables so as to 

improve the overall performance of a model. 
Hence, all indicator and pathogenic microbial 
load data were subjected to a base 10 log trans-
formations after obtaining unsatisfactory results 
without prior transformation. All river discharge 
and physicochemical variables were included in 
the regression analysis.

The final regression models should contain 
only those explanatory variables that signifi-
cantly contribute in predicting the response 
variable. A stepwise regression method was 
applied to select the best possible fitted model, 
starting out with all the explanatory variables 
and removing insignificant variables in a step-
wise manner. In order to test the predictive 

power of each explanatory variable, t-tests for the 
regression coefficients were carried out. That 
means to test the null hypothesis that the expla-
natory variable being tested has no effect on the 
model (regression coefficient zero) against the 
alternative hypothesis that the independent vari-
able has an effect (regression coefficient non-
zero) on the model. For each step, the t-test 
eliminates the least significant explanatory vari-
able, and the model is refitted with the remai-
ning variables. This is repeated until all the 
explanatory variables currently in the model are 
significant (α=0.05). The least squares regression 
coefficients, the standard errors, the t-values and 
the level of significance for rejecting the null 
hypothesis for each selected variable are given in 
Table 3. From these relationships, the following 
multiple linear regression equations are formu-
lated for each indicator and virus concentration 
variable in the raw water:

Log HPC = -5.55+0.06 [Colour]+0.70 [EC]+1.01[pH]

Log C.perfringens = -6.92+0.03[Colour]+0.53[EC] 
+0.79[pH]+0.04[Temperature]

Log E.coli = -14.49+0.04[Colour]+0.95[EC]+1.87[pH]-
0.05[Temperature] -0.02[Turbidity]

Log Coliform bacteria = -14.76+0.04[Colour]+ 0.64[EC]+ 
2.23[pH]

Log Int.enterococci = -2.43-0.03[Temperature]-
0.03[Turbidity]+0.98[EC]+0.03[Colour]

Log Adenovirus =12.03-1.84[pH]-0.13[Rainfall]+0.45[EC]

Log Norovirus (GI) = 5.54-1.02[pH]+0.55[EC]

Log Norovirus (GII) = 0.05-0.33[Turbidity]+0.42[EC]-
0.03[Temperature]

The above fitted models can be tested for their 
overall ability to predict the response variable 
using an F-test, or equivalently, by an analysis of 
variance (ANOVA). The results from ANOVA 
and the F-tests are given in Table 4 and shows 
that all models are significant at p < 0.0001. This 
means there is evidence for rejecting H0 (of no 

predictive ability) and instead assume the pre-
sence of a linear relationship between the response 
(microbial load) and the explanatory variables 
(physicochemical factors). 

Another important topic that needs to be 
 discussed in this modeling process is multicol-
linearity, the problem when some of the inde-
pendent variables are correlated with each other, 
resulting in an imprecision in the calculated 
parameter estimates. The problem of multicol-
linearity can be analyzed by looking at variance 
inflation factors (VIF). Those independent vari-
ables with VIF > 10 (standard VIF value chosen 
in statistics), are considered as having a problem 
of multicollinearity and removed from the 
modelling. Since Table 5 shows that the VIF for 
all variables are less than 10, one can reasonably 
assume that the explanatory variables are not too 
strongly correlated.  

The goodness-of-fit of a multiple regression 
model describes how well the regression model 
fits the data points. All the indices that exist to 
evaluate the goodness-of-fit summarize the dis-
crepancy between the observed values and the 
values estimated under the regression model. 
They can only tell how good the model fits with 
the data used to build the models, not beyond the 
extent of the data set. The most commonly used 
index is the coefficient of determination (R2), 
which in this study ranges from 0.40 to 0.72 
(Table 6). The interpretation is that about 40% to 
72% of the variability in the raw water microbial 
variable can be explained by variation in the 
explanatory variables. The R2 statistic is to some 
extent problematic as a goodness-of-fit index 
because it constantly increases when an explan-
atory variable is added to the model. The adjusted 
R2 is another index that is often preferred as a 
measure of regression model quality. It accounts 
for the number of explanatory variables used in 
the model and in this study it ranges from 0.40 
to 0.71. The Mean Square Error (MSE) and Root 
Mean Square Error (RMSE) measure the residual 
error which gives an estimation of the mean dis-
similarity between observed and modeled values 
of microbial load. In this study, the indices are 
relatively low. 

Table 2. Correlation coefficients (r) among explanatory variables and raw water microbial variables.

Variables Rån Bla Fun Ert Vor Tem Rain pH Turb Cond Col TOC HPC C.perf. Int.ent. E.coli Col.b.

Rånåsfoss dis. 1

Blaker dis. 0.96 1

Funnefoss dis. 0.78 0.80 1

Ertesekken dis. 0.84 0.78 0.40 1

Vorma dis. 0.79 0.76 0.72 0.81 1

Temperature 0.75 0.72 0.63 0.75 0.84 1

Rainfall 0.42 0.33 0.20 0.29 0.39 0.21 1

pH    0.22 0.17 0.17 0.22 -0.15 0.29 0.11 1

Turbidity 0.06 0.04 0.05 0.06 0.25 0.14 0.07 -0.32 1

Conductivity 0.03 -0.14 0.02 0.16 -0.49 0.06 -0.19 0.60 0.37 1

Colour 0.16 0.19 0.40 -0.09 0.21 -0.02 0.01 0.12 -0.23 -0.22 1

T. org. carbon 0.10 0.12 0.17 0.02 0.29 -0.06 0.03 -0.22 0.06 -0.21 0.58 1

HPC 0.23 0.20 0.31 0.13 -0.12 0.20 -0.19 0.59 -0.03 0.41 0.27 -0.04 1

C. perfringens 0.04 0.02 0.19 -0.07 -0.22 -0.02 -0.02 0.75 -0.20 0.62 0.24 -0.04 0.69 1

Int. enterococci -0.01 -0.06 0.06 -0.03 -0.16 -0.06 -0.01 0.58 -0.22 0.45 0.22 -0.03 0.72 0.70 1

E.coli 0.01 -0.06 0.08 -0.02 0.04 -0.04 -0.11 0.82 0.25 0.65 0.17 -0.09 0.72 0.87 0.84 1

Col. bacteria 0.19 0.13 0.20 0.14 -0.18 0.19 -0.10 0.78 -0.22 0.57 0.16 -0.08 0.74 0.79 0.80 0.90 1

Adenovirus -0.29 -0.09 -0.11 -0.19 -0,24 -0.16 -0.24 -0.23 -0.04 0.47 0.01 0.02 - - - - -

Norovirus (GI) -0.20 0.11 -0.08 -0.18 -0,30 -0.27 -0.10 -0.10 -0.32 0.54 0.12 0.12 - - - - -

Norovirus (GII) -0.23 0.19 -0.13 -0.16 -0.32 -0.32 -0.17 0.04 -0.36 0.49 0.06 0.09 - - - - -
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Figure 2 shows a graph with observed micro-
bial variables and predicted microbial variables 
with 95 % confidence intervals. Some observa-
tions are outside of the 95% confidence intervals, 
which is to be expected. Although the data 
points are spread out around the line of perfect 
fit, the figure shows that these models are able to 
predict microbial load with reasonable precision.

Finally, the residuals were plotted as a func-
tion of the predicted values as illustrated in 
Figure 3. There is no obvious pattern in the resi-
dual plots for any of the models. This means 
there is no left over information in the data that 
the models did not utilize. Moreover, it can be 

seen from the plots that the residuals are distri-
buted evenly above and below zero, which indi-
cates that the variance is constant and does not 
depend on the predicted value. The models are 
therefore deemed valid for describing the depen-
dent variables based on the selected explanatory 
data set.

Limitations of the Study
Although there is much remains to be done, our 
work generates important finding in the field of 
microbial water quality modelling using different 
physicochemical parameters. Even though this 
study generated important findings, a number of 

Table 3. Regression coefficients.

Response Variable Predictors Coefficient Standard error t Pr > |t|

HPC

Constant -5,55 1,65 -3,37 0,0009

pH  1,01 0,27  3,75 0,0002

Conductivity  0,70 0,11  6,31 < 0,0001

Colour  0,06 0,01  10,11 < 0,0001

Clostridium 
perfringens

Constant -6,92 1,02 -6,81 <0,0001

pH  0,79 0,16  4,51 <0,0001

Temperature -0,04 0,01 -4,64 <0,0001

Conductivity  0,53 0,07  7,47 <0,0001

Colour  0,03 0,00  9,65 <0,0001

Escherichia coli

Constant -14,49 1,52 -9,52 <0,0001

Temperature -0,05 0,01 -4,88 < 0,0001

Turbidity -0,02 0,01 -2,57  0,0106

Conductivity  0,95 0,11  8,36 < 0,0001

Colour  0,04 0,00  8,35 <0,0001

pH  1,87 0,27  6,83 <0,0001

Coliform bacteria

Constant -14,76 1,29 -11,47 <0,0001

pH  2,23 0,20  11,33 <0,0001

Conductivity  0,64 0,07  8,84 < 0,0001

Colour  0,04 0,00  8,82 < 0,0001

Intestinal enterococci

Constant -2,43 0,56 -4,31 < 0,0001

Temperature -0,03 0,02 -1,95  0,043

Turbidity -0,03 0,01 -4,26 < 0,0001

Conductivity  0,98 0,12  8,35 < 0,0001

Colour  0,03 0,01  3,64  <0,0001

Adenovirus

Constant  12,03 4,32  2,79 0,007

pH -1,84 0,65 -2,83 0,006

Rainfall -0,13 0,04 -3,60 0,001

Conductivity  0,45 0,11  4,18 < 0,0001

Norovirus (GI)
Constant  5,54 2,62  2,11 0,039

pH -1,02 0,35 -2,90 0,005

Conductivity  0,55 0,10  5,60 < 0,0001

Norovirus (GII)

Constant  0,05 0,77  0,06 0,953

Turbidity -0,33 0,07 -4,67 < 0,0001

Conductivity  0,42 0,13  3,23 0,002

Temperature -0,03 0,02 -1,93 0.049

Table 4. ANOVA for regression.

Response Variable Source DF Sum of squares Mean squares F Pr > F

HPC

Regression 3 315.62 78.90 71.08 < 0.0001

Residual 287 429.80 1.42  

Total 290 745.42  

Clostridium 
perfringens 
 

Regression 4 1196.01 299.00 87.19 < 0.0001

Residual 286 1677.65 14.98  

Total 290 2873.66  

Escherichia coli 
 

Regression 5 116.72 29.18 247.90 < 0.0001

Residual 293 112.64 0.46  

Total 298 229.36  

Coliform bacteria 
 

Regression 3 15.08 5.03 142.30 < 0.0001

Residual 523 16.22 0.12  

Total 526 31.29  

Intestinal 
enterococci 
 

Regression 4 110.89 27.72 22.07 < 0.0001

Residual 123 154.49 1.26  

Total 127 265.37  

Adenovirus
 
 

Regression 3 15.15 5.05 15.62 < 0.0001

Residual 70 22.63 0.32  

Total 73 37.78  

Norovirus (GI)
 
 

Regression 2 6.94 3.47 24,05 < 0.0001

Residual 60 8.65 0.14  

Total 62 15.59  

Norovirus (GII)
 
 

Regression 3 12.95 4.32 19.04 < 0.0001

Residual 55 12.47 0.23  

Total 58 25.41  
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Table 5. VIF values for the multicollinearity test.

Response Variable Explanatory variables VIF

HPC

pH 1.766

Conductivity 1.788

Colour 1.176

Clostridium perfringens 

pH 1.821

Temperature 1.035

Conductivity 1.959

Colour 1.648

Escherichia coli 

Temperature 1.341

Turbidity 1.311

Conductivity 1.557

Colour 1.484

pH 1.034

Coliform bacteria 

pH 1.019

Conductivity 3.316

Colour 1.066

Intestinal enterococci  

Temperature 2,118

Turbidity 2,859

Conductivity 4,588

Colour 1,543

Adenovirus

pH 1,225

Rainfall 1,128

Conductivity 1,175

Norovirus (GI)
pH 1,041

Conduct 1,041

Norovirus (GII)

Turbidity 1,235

Conductivity 1,592

Raw water temperature 1,743

Table 6. Goodness of fit statistics of the regression models.

Statistics HPC C.perfringens E coli
Coliform 
bacteria

Intestinal 
enterococci

Adenovirus
Norovirus

(GI)
Norovirus

(GII)

R² 0.42 0.55 0.72 0.45 0.42 0.40 0.45 0.51

Adjusted R² 0.41 0.54 0.71 0.45 0.40 0.38 0.43 0.48

MSE 1.42 14.98 0.46 0.12 1.26 0.32 0.14 0.23

RMSE 1.19 3.87 0.68 0.35 1.12 0.57 0.38 0.47

Figure 2. Microbial water quality variables predicted versus actual observation (95 % CI).
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Conclusion
The determination of what factors influence the 
microbial quality of a given water source is of key 
interest to water related policy makers and water 
treatment plants worldwide. The overall aim of 
this study was to gain an understanding of the 
factors affecting microbial load in the raw water 
through the application of multiple linear regres-
sion analysis. The results indicated that for each 
microbial load variable, different physicochemi-
cal variables could explain from 40 percent to 72 
percent of the variation. While these models do 
not suggest causation, the models generated 
within this research have significant explanatory 
power and such models can (1) provide coarse 
level information for regional or even watershed 
management and (2) provide additional informa-
tion for water utilities on the microbial water 
quality and possibly be integrated into early 
warning systems for microbial contamination 
events. 

The developed linear regression models are 
simple and provide best fits to the data set. The 
predictive power of present model has not there-
fore been compared with others due to lack of 
modeling studies on microbial water quality of 
the source water using similar variables and 
approaches. However, the predictive power 
achieved and the incorporation of different phy-
sicochemical factors promote the validity of our 
models in predicting microbial concentration 
level in the source water. To the best of the auth-
ors’ knowledge, this is the first time that a drink-
ing water treatment plant in Norway examined 
its indicator microbial load data set in associa-
tion with different physicochemical factors in a 
detailed manner in the river basin. As data sour-
ces and modeling approaches improve through 
time, these modeling tools could become more 
and more accurate and valuable.
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